Autoregressive and Moving Average Processes ------------------------------------------- Moving Average Processes ^^^^^^^^^^^^^^^^^^^^^^^^ MA processes are characterized by a mean and lagged white noise. The first order moving average process is .. math:: x_t &= \mu + u_t - \beta u_{t-1}\\ x_t - \mu &= (1 - \beta L) U-z Autoregressive Processes ^^^^^^^^^^^^^^^^^^^^^^^^ AR processes model the dependent variable with weighted lagged terms and white noise. The first order autoregressive process looks like this .. math:: x_t = \delta + \alpha x_{t-1} + u_t with :math:`u_t sim \mathcal{N}(0, \sigma^2)`. The expression can be extended to infinite periods by recursively inserting values for :math:`x_{t-1}, x_{t-2}, \dots`: .. math:: x_t = \alpha^{t - t_0} x_{t_0} + (1 + \alpha + \alpha^2 + \dots + \alpha^{t_0}) \delta + \sum^{t - t_0 - 1}_{j=0} \alpha^j u_{t-j} If :math:`t_0 \to -\infty` and :math:`|\alpha| < 1`, the process can be modeled as a constant plus additional white noise. .. math:: x_t = \underset{E(x_t)}{\frac{\delta}{1 - \alpha}} + \sum^\infty_{j=0} \alpha^j u_{t-j} The equations can also be exressed with the lag operator .. math:: (1 - \alpha L) x_t &= \delta + u_t\\ x_t &= \frac{\delta}{1 - \alpha L} + \frac{u_t}{1 - \alpha L} where :math:`\frac{1}{1 - \alpha L}` can be expanded to geometric series .. math:: \frac{1}{1 - \alpha L} = 1 + \alpha L + \alpha^2 L^2 + \alpha^3 L^3 + \dots Moments ^^^^^^^ Properties for :math:`|\alpha| < 1`: .. math:: \gamma(0) &= V(x_t)\\ &= E[(x_t - E[x_t])^2]\\ &= E[(\frac{\delta}{1 - \alpha L} + \frac{u_t}{1 - \alpha L} - E[\frac{\delta}{1 - \alpha L} + \frac{u_t}{1 - \alpha L}])^2]\\ &= E[(\frac{\delta}{1 - \alpha L} + \frac{u_t}{1 - \alpha L} - \frac{\delta}{1 - \alpha L} - \frac{E[u_t]}{1 - \alpha L})^2]\\ &= E[(\frac{u_t}{1 - \alpha L})^2]\\ &= E[] Link between stationarity and roots of the characteristic equation ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ https://stats.stackexchange.com/questions/183931/link-between-stationarity-of- ar2-and-stability-condition-of-corresponding-diff