Problem Set 2: Stationary Univariate Processes ¶
Exercise 1¶
Show that the coefficients of the Wold representation of the stable \(ARMA(1, 1)\) model evolve according to the difference equation
with initial condition \(\psi_1 = \alpha - \beta\).
Without loss of generality we assume \(\delta = 0\) so that the \(ARMA(1, 1)\) representation is given by
For the Wold representation, the process needs to be converted to an \(MA(\infty)\) process.
If all roots of the characteristic equation of \((1 - \alpha L)\) lay outside the unit circle, it is invertible. Furthermore, since \(\alpha < 1\) we can expand the expression to an infinite series.
To match the expression of the Wold representation, the following relation has to hold
Matching by \(L^j\) yields
Exercise 2¶
Consider the following \(ARMA(2, 2)\) process, where \(\epsilon_t \overset{i.i.d.}{\sim} \mathcal{N}(0, 1)\):
- Is the process stationary? Why?
First, the process is rewritten with the lag operator.
The process is stationary if the roots of the characteristic equation of \((1 - 0.3 L + 0.2 L^2)\) lay outside the unit circle. Therefore, we replace \(L\) with \(z\) and solve it using the \(p-q\) formula.
where \(\mid z_{1,2}\mid > 1\) and therefore the process is stationary. The same result could have been obtained by using a different characteristic equation with \(z^{-1} = \lambda\). The characteristic equation can be rewritten to (1)
Proceeding with calculating the roots yields
where \(\mid\lambda_{1, 2}\mid < 1\).
The reason for the condition on the roots of the equation to be either \(\mid z\mid > 1\) or \(\mid \lambda \mid < 1\) is that
.
- Is the process invertible? Why?
The process is invertible if the lag polynomial of the \(MA\) part have characteristic roots being smaller or greater than one depending on the two approaches above. We stick to the lambda representation.
As the root of a negative number does not exist without imaginery numbers, the roots do not exist and the process is not invertible.
- Compute \(E(y_t)\).
To compute the expectation of \(y_t\), take the process and stationarity.
- Compute the autocovariances \(\gamma(\tau)\) for \(\tau = 0, 1, \dots, 4\).
To compute the autocovariances, take the process, multiply \(y_{t-\tau}\) and take expectations.
For the covariances of \(y_{t-\tau}\) and \(\epsilon_i\), the Wold representation is used. Rewrite the process with the lag operator yielding:
To suffice the Wold representation, the following equation has to hold.
Matching by \(L^j\) yields
Finally, the Wold representation
With the \(ARMA(2, 2)\) represented as \(MA(\infty)\), we can proceed with the autocovariances.
From the second equation, we get that \(1.2 \gamma(1) = 0.3 \gamma(0) + 0.7 \sigma^2 = \frac{3}{12} \gamma(0) + \frac{7}{12} \sigma^2\). Inserting the expression in the third equation gives
TODO: Finish equations.
- Compute the coefficients of \(\epsilon_t, \epsilon_{t-1}, \dots, \epsilon_{t-4}\) in the \(MA(\infty)\) representation of \(y_t\).
This can be looked up above in subtask 4.
Exercise 3¶
Consider the following \(MA(3)\) process, where \(\epsilon_t \overset{i.i.d.}{\sim} \mathcal{N}(0, 1)\):
Use Julia to simulate the model and to compute the ACFs and PACFs at orders 1 to 10.
In [1]:
using Distributions, Random, Plots, StatsBase
Random.seed!(123);